Lung Cancer



Definition of Lung Cancer

Lung cancer is a disease characterized by uncontrolled cell growth in tissues of the lung. If left untreated, this growth can spread beyond the lung in a process called metastasis into nearby tissue and, eventually, into other parts of the body. Most cancers that start in lung, known as primary lung cancers, are carcinomas that derive from epithelial cells. The main types of lung cancer are small-cell lung carcinoma (SCLC), also called oat cell cancer, and non-small-cell lung carcinoma (NSCLC). The most common cause of lung cancer is long-term exposure to tobacco smoke, which causes 80–90% of lung cancers. Nonsmokers account for 10–15% of lung cancer cases, and these cases are often attributed to a combination of genetic factors, radon gas, asbestos, and air pollution including secondhand smoke.The most common symptoms are coughing (including coughing up blood), weight loss and shortness of breath. Lung cancer may be seen on chest radiograph and computed tomography (CT scan). The diagnosis is confirmed with a biopsy. This is usually performed by bronchoscopy or CT-guided biopsy. Treatment and prognosis depend on the histological type of cancer, the stage (degree of spread), and the patient’s general well-being, measured by performance status. Common treatments include surgery, chemotherapy, and radiotherapy. NSCLC is sometimes treated with surgery, whereas SCLC usually responds better to chemotherapy and radiotherapy.

Cause of Lung Cancer  

Cancer develops following genetic damage to DNA. This genetic damage affects the normal functions of the cell, including cell proliferation, programmed cell death (apoptosis) and DNA repair. As more damage accumulates, the risk of cancer increases.

Smoking

Smoking, particularly of cigarettes, is by far the main contributor to lung cancer. Cigarette smoke contains over 60 known carcinogens, including radioisotopes from the radon decay sequence, nitrosamine, and benzopyrene. Additionally, nicotine appears to depress the immune response to malignant growths in exposed tissue. Across the developed world, 90% of lung cancer deaths in men during the year 2000 were attributed to smoking (70% for women). Smoking accounts for 80–90% of lung cancer cases.
Passive smoking—the inhalation of smoke from another’s smoking—is a cause of lung cancer in nonsmokers. A passive smoker can be classified as someone living or working with a smoker. Those who live with someone who smokes have a 20–30% increase in risk while those who work in an environment with second hand smoke have a 16–19% increase in risk. Investigations of sidestream smoke suggest it is more dangerous than direct smoke.

Radon gas

Radon is a colorless and odorless gas generated by the breakdown of radioactive radium, which in turn is the decay product of uranium, found in the Earth’s crust. The radiation decay products ionize genetic material, causing mutations that sometimes turn cancerous. Radon is the second-most common cause of lung cancer in the USA, after smoking. The risk increases 8–16% for every 100 Bq/m³ increase in the radon concentration. Radon gas levels vary by locality and the composition of the underlying soil and rocks.

Asbestos

Asbestos can cause a variety of lung diseases, including lung cancer. Tobacco smoking and asbestos have a synergistic effect on the formation of lung cancer.Asbestos can also cause cancer of the pleura, called mesothelioma (which is different from lung cancer).

Air pollution
Outdoor air pollution has a small effect on increasing the risk of lung cancer. Fine particulates (PM2.5) and sulfate aerosols, which may be released in traffic exhaust fumes, are associated with slightly increased risk. For nitrogen dioxide, an incremental increase of 10 parts per billion increases the risk of lung cancer by 14%. Outdoor air pollution is estimated to account for 1–2% of lung cancers.

Genetics
Some people have a genetic predisposition to lung cancer. In relatives of people with lung cancer, the risk is increased 2.4 times. This may be due to genetic polymorphisms.

Other causes
Numerous other substances, occupations, and environmental exposures have been linked to the genesis of cancer in lung tissue of humans. In its List of Classifications by Cancer Sites,the International Agency for Research on Lung Cancer (IARC) states there is “sufficient evidence” to show the following are carcinogenic in lung:Aluminum production
Arsenic and inorganic arsenic compounds
Beryllium and beryllium compounds
Bis-(chloromethyl) ether
Methyl ether (technical grade)
Cadmium and cadmium compounds
Chromium(VI) compounds
Coal (indoor emissions from household coal burning)
Combustion (incomplete)
Coal gasification
Coal-tar pitch
Coke production
Diesel engine exhaust
Gamma radiation
Hematite mining (underground)
Iron and steel founding
MOPP (vincristine-prednisone-nitrogen mustard-procarbazine mixture)
Nickel compounds
Painting
Plutonium
Radon-222 and its decay products
Rubber production industry
Silica dust (crystalline)
Soot
Sulfur mustard
X-radiation 

Signs and Symptoms of Lung Cancer

Signs and symptoms that may suggest lung cancer include:

  • respiratory symptoms: coughing, coughing up blood, wheezing or shortness of breath
  • systemic symptoms: weight loss, fever, clubbing of the fingernails, or fatigue
  • symptom due to local compress: chest pain, bone pain, superior vena cava obstruction, difficulty swallowing

If the cancer grows in the airway, it may obstruct airflow, causing breathing difficulties. The obstruction can lead to accumulation of secretions behind the blockage, and predispose to pneumonia.
Depending on the type of tumor, so-called paraneoplastic phenomena may initially attract attention to the disease. In lung cancer, these phenomena may include Lambert–Eaton myasthenic syndrome (muscle weakness due to autoantibodies), hypercalcemia, or syndrome of inappropriate antidiuretic hormone (SIADH). Tumors in the top of the lung, known as Pancoast tumors, may invade the local part of the sympathetic nervous system, leading to Horner’s syndrome (dropping of the eyelid and a small pupil on that side), as well as damage to the brachial plexus.
Many of the symptoms of lung cancer (poor appetite, weight loss, fever, fatigue) are not specific. In many people, the cancer has already spread beyond the original site by the time they have symptoms and seek medical attention. Common sites of spread include the brain, bone, adrenal glands, opposite lung, liver, pericardium, and kidneys. About 10% of people with lung cancer do not have symptoms at diagnosis; these cancers are incidentally found on routine chest radiography.

Risk Factors for Lung Cancer

Risk factors for lung cancer include:

Smoking and secondhand smoke: Smoking remains the greatest risk factor for lung cancer. Tobacco smoke is a toxic mix of more than 7,000 chemicals. Many are poisons.
Exposure to radon gas: Radon is a radioactive gas produced by the natural breakdown of uranium in soil, rock and water. High radon exposure can accumulate in any building, including homes.
Occupational exposures: Some substances such as asbestos, arsenic, diesel exhaust, and some forms of silica and chromium found at some workplaces increase risk. For many of these substances also can increase your risk of developing lung cancer, especially if you’re a smoker.
Family history of lung cancer: People with a family history of lung cancer in a first-degree relative have an increased risk of the disease.
Excessive alcohol use: Drinking more than a moderate amount of alcohol may increase the risk of lung cancer.
Radiation therapy to the chest: People who had radiotherapy for breast cancer have an increased lung cancer risk. Also, treatment for Hodgkin lymphoma increases lung cancer risk.

Diagnosis of Lung Cancer

Performing a chest radiograph is one of the first investigative steps if a person reports symptoms that may suggest lung cancer. This may reveal an obvious mass, widening of the mediastinum (suggestive of spread to lymph nodes there), atelectasis (collapse), consolidation (pneumonia), or pleural effusion. CT imaging is typically used to provide more information about the type and extent of disease. Bronchoscopy or CT-guided biopsy is often used to sample the tumor for histopathology.
Lung cancer often appears as a solitary pulmonary nodule on a chest radiograph. However, the differential diagnosis is wide. Many other diseases can also give this appearance, including tuberculosis, fungal infections, metastatic cancer, or organizing pneumonia. Less common causes of a solitary pulmonary nodule include hamartomas, bronchogenic cysts, adenomas, arteriovenous malformation, pulmonary sequestration, rheumatoid nodules, Wegener’s granulomatosis, or lymphoma. Lung cancer can also be an incidental finding, as a solitary pulmonary nodule on a chest radiograph or CT scan done for an unrelated reason. The definitive diagnosis of lung cancer is based on histological examination of the suspicious tissue in the context of the clinical and radiological features.

Classification

Lung cancers are classified according to histological type. This classification is important for determining management and predicting outcomes of the disease. The vast majority of lung cancers are carcinomas—malignancies that arise from epithelial cells. Lung carcinomas are categorized by the size and appearance of the malignant cells seen by a histopathologist under a microscope. The two broad classes are non-small-cell and small-cell lung carcinoma.

Non-small-cell lung carcinoma

The three main subtypes of NSCLC are adenocarcinoma, squamous-cell lung carcinoma, and large-cell lung carcinoma.
Nearly 40% of lung cancers are adenocarcinoma, which usually originates in peripheral lung tissue. Most cases of adenocarcinoma are associated with smoking; however, among people who have smoked fewer than 100 cigarettes in their lifetimes (“never-smokers”), adenocarcinoma is the most common form of lung cancer. A subtype of adenocarcinoma, the bronchioloalveolar carcinoma, is more common in female never-smokers, and may have a better long term survival.
Squamous-cell carcinoma accounts for about 30% of lung cancers. They typically occur close to large airways. A hollow cavity and associated cell death are commonly found at the center of the tumor. About 9% of lung cancers are large-cell carcinoma. These are so named because the cancer cells are large, with excess cytoplasm, large nuclei and conspicuous nucleoli.

Small-cell lung carcinoma

In small-cell lung carcinoma (SCLC), the cells contain dense neurosecretory granules (vesicles containing neuroendocrine hormones), which give this tumor an endocrine/paraneoplastic syndrome association. Most cases arise in the larger airways (primary and secondary bronchi). These cancers grow quickly and spread early in the course of the disease. Sixty to seventy percent have metastatic disease at presentation. This type of lung cancer is strongly associated with smoking.

Others

Four main histological subtypes are recognized, although some cancers may contain a combination of different subtypes. Rare subtypes include glandular tumors, carcinoid tumors, and undifferentiated carcinomas.

Metastasis

The lung is a common place for the spread of tumors from other parts of the body. Secondary cancers are classified by the site of origin; e.g., breast cancer that has spread to the lung is called metastatic breast cancer. Metastases often have a characteristic round appearance on chest radiograph.
Primary lung cancers themselves most commonly metastasize to the brain, bones, liver, and adrenal glands. Immunostaining of a biopsy is often helpful to determine the original source.

Staging

Lung cancer staging is an assessment of the degree of spread of the cancer from its original source. It is one of the factors affecting the prognosis and potential treatment of lung cancer.
The initial evaluation of non-small-cell lung cancer (NSCLC) staging uses the TNM classification. This is based on the size of the primary tumor, lymph node involvement, and distant metastasis. After this, using the TNM descriptors, a group is assigned, ranging from occult cancer, through stages 0, IA (one-A), IB, IIA, IIB, IIIA, IIIB and IV (four). This stage group assists with the choice of treatment and estimation of prognosis. Small-cell lung carcinoma (SCLC) has traditionally been classified as ‘limited stage’ (confined to one half of the chest and within the scope of a single tolerable radiotherapy field) or ‘extensive stage’ (more widespread disease). However, the TNM classification and grouping are useful in estimating prognosis.
For both NSCLC and SCLC, the two general types of staging evaluations are clinical staging and surgical staging. Clinical staging is performed prior to definitive surgery. It is based on the results of imaging studies (such as CT scans and PET scans) and biopsy results. Surgical staging is evaluated either during or after the operation, and is based on the combined results of surgical and clinical findings, including surgical sampling of thoracic lymph nodes

Prevention from Lung Cancer

Prevention is the most cost-effective means of decreasing lung cancer development. While in most countries industrial and domestic carcinogens have been identified and banned, tobacco smoking is still widespread. Eliminating tobacco smoking is a primary goal in the prevention of lung cancer, and smoking cessation is an important preventive tool in this process.
The long-term use of supplemental vitamin A, vitamin C, vitamin D or vitamin E does not reduce the risk of lung cancer. Some studies suggest people who eat diets with a higher proportion of vegetables and fruit tend have a lower risk, but this is likely due to confounding. More rigorous studies have not demonstrated a clear association.

Screening

Screening refers to the use of medical tests to detect disease in asymptomatic people. Possible screening tests for lung cancer include sputum cytology, chest radiograph (CXR), and computed tomography (CT). Screening programs using CXR or cytology have not demonstrated benefit. Screening those at high risk (i.e. age 55 to 79 who have smoked more than 30 pack years or those who have had previous lung cancer) annually with low-dose CT scans may reduce the chance of death from lung cancer by an absolute amount of 0.3% (relative amount of 20%). There is, however, a high rate of falsely positive scans which may result in unneeded invasive procedures as well as substantial financial cost. For each true positive scan there are more than 19 false positives. Radiation exposure is another potential harm from screening.

Treatment of Lung Cancer

Treatment for lung cancer depends on the cancer’s specific cell type, how far it has spread, and the person’s performance status. Common treatments include palliative care, surgery, chemotherapy, and radiation therapy.

Surgery

If investigations confirm NSCLC, the stage is assessed to determine whether the disease is localized and amenable to surgery or if it has spread to the point where it cannot be cured surgically. CT scan and positron emission tomography are used for this determination. If mediastinal lymph node involvement is suspected, mediastinoscopy may be used to sample the nodes and assist staging. Blood tests and pulmonary function testing are used to assess whether a person is well enough for surgery. If pulmonary function tests reveal poor respiratory reserve, surgery may not be a possibility.
In most cases of early-stage NSCLC, removal of a lobe of lung (lobectomy) is the surgical treatment of choice. In people who are unfit for a full lobectomy, a smaller sublobar excision (wedge resection) may be performed. However, wedge resection has a higher risk of recurrence than lobectomy. Radioactive iodine brachytherapy at the margins of wedge excision may reduce the risk of recurrence. Rarely, removal of a whole lung (pneumonectomy) is performed. Video-assisted thoracoscopic surgery and VATS lobectomy use a minimally invasive approach to lung cancer surgery. VATS lobectomy is equally effective compared to conventional open lobectomy, with less postoperative illness.
In SCLC, chemotherapy and/or radiotherapy is typically used. However the role of surgery in SCLC is being reconsidered. Surgery might improve outcomes when added to chemotherapy and radiation in early stage SCLC.

Radiotherapy

Radiotherapy is often given together with chemotherapy, and may be used with curative intent in people with NSCLC who are not eligible for surgery. This form of high-intensity radiotherapy is called radical radiotherapy. A refinement of this technique is continuous hyperfractionated accelerated radiotherapy (CHART), in which a high dose of radiotherapy is given in a short time period. Postoperative thoracic radiotherapy generally should not be used after curative intent surgery for NSCLC. Some people with mediastinal N2 lymph node involvement might benefit from post-operative radiotherapy.
For potentially curable SCLC cases, chest radiotherapy is often recommended in addition to chemotherapy.
If cancer growth blocks a short section of bronchus, brachytherapy (localized radiotherapy) may be given directly inside the airway to open the passage. Compared to external beam radiotherapy, brachytherapy allows a reduction in treatment time and reduced radiation exposure to healthcare staff.
Prophylactic cranial irradiation (PCI) is a type of radiotherapy to the brain, used to reduce the risk of metastasis. PCI is most useful in SCLC. In limited-stage disease, PCI increases three-year survival from 15% to 20%; in extensive disease, one-year survival increases from 13% to 27%.
Recent improvements in targeting and imaging have led to the development of stereotactic radiation in the treatment of early-stage lung cancer. In this form of radiotherapy, high doses are delivered in a small number of sessions using stereotactic targeting techniques. Its use is primarily in patients who are not surgical candidates due to medical comorbidities.
For both NSCLC and SCLC patients, smaller doses of radiation to the chest may be used for symptom control (palliative radiotherapy).

Chemotherapy

The chemotherapy regimen depends on the tumor type. Small-cell lung carcinoma (SCLC), even relatively early stage disease, is treated primarily with chemotherapy and radiation. In SCLC, cisplatin and etoposide are most commonly used. Combinations with carboplatin, gemcitabine, paclitaxel, vinorelbine, topotecan, and irinotecan are also used. In advanced non-small cell lung carcinoma (NSCLC), chemotherapy improves survival and is used as first-line treatment, provided the person is well enough for the treatment. Typically, two drugs are used, of which one is often platinum-based (either cisplatin or carboplatin). Other commonly used drugs are gemcitabine, paclitaxel, docetaxel, pemetrexed, etoposide or vinorelbine.
Adjuvant chemotherapy refers to the use of chemotherapy after apparently curative surgery to improve the outcome. In NSCLC, samples are taken of nearby lymph nodes during surgery to assist staging. If stage II or III disease is confirmed, adjuvant chemotherapy improves survival by 5% at five years. The combination of vinorelbine and cisplatin is more effective than older regimens. Adjuvant chemotherapy for people with stage IB cancer is controversial, as clinical trials have not clearly demonstrated a survival benefit. Trials of preoperative chemotherapy (neoadjuvant chemotherapy) in resectable NSCLC have been inconclusive.

Palliative care

In people with terminal disease, palliative care or hospice management may be appropriate. These approaches allow additional discussion of treatment options and provide opportunities to arrive at well-considered decisions and may avoid unhelpful but expensive care at the end of life.
Chemotherapy may be combined with palliative care in the treatment of the NSCLC. In advanced cases, appropriate chemotherapy improves average survival over supportive care alone, as well as improving quality of life. With adequate physical fitness, maintaining chemotherapy during lung cancer palliation offers 1.5 to 3 months of prolongation of survival, symptomatic relief, and an improvement in quality of life, with better results seen with modern agents. The NSCLC Meta-Analyses Collaborative Group recommends if the recipient wants and can tolerate treatment, then chemotherapy should be considered in advanced NSCLC.