Fever



A healthy person’s body temperature fluctuates between 97 °F (36.1 °C) and 100 °F (37.8 °C), with the average being 98.6 °F (37 °C). The body maintains stability within this range by balancing the heat produced by the metabolism with the heat lost to the environment. The “thermostat” that controls this process is located in the hypothalamus, a small structure located deep within the brain. The nervous system constantly relays information about the body’s temperature to the thermostat, which in turn activates different physical responses designed to cool or warm the body, depending on the circumstances. These responses include: decreasing or increasing the flow of blood from the body’s core, where it is warmed, to the surface, where it is cooled; slowing down or speeding up the rate at which the body turns food into energy (metabolic rate); inducing shivering, which generates heat through muscle contraction; and inducing sweating, which cools the body through evaporation.

A fever occurs when the thermostat resets at a higher temperature, primarily in response to an infection. To reach the higher temperature, the body moves blood to the warmer interior, increases the metabolic rate, and induces shivering. The “chills” that often accompany a fever are caused by the movement of blood to the body’s core, leaving the surface and extremities cold. Once the higher temperature is achieved, the shivering and chills stop. When the infection has been overcome or drugs such as aspirin or acetaminophen (Tylenol) have been taken, the thermostat resets to normal and the body’s cooling mechanisms switch on: the blood moves to the surface and sweating occurs.
Fever is an important component of the immune response, though its role is not completely understood. Physicians believe that an elevated body temperature has several effects. The immune system chemicals that react with the fever-inducing agent and trigger the resetting of the thermostat also increase the production of cells that fight off the invading bacteria or viruses. Higher temperatures also inhibit the growth of some bacteria, while at the same time speeding up the chemical reactions that help the body’s cells repair themselves. In addition, the increased heart rate that may accompany the changes in blood circulation also speeds the arrival of white blood cells to the sites of infection.